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Abstract. The cattle tick, Rhipicephalus microplus, which reached the West African region approximately 8 years ago, has
established viable populations in Côte d’Ivoire and Benin and spread rapidly from the assumed points of introduction.
However, existing maps of its distribution range do not agree on the areas at risk, most probably due to suboptimal mod-
elling approaches. Therefore, we undertook a re-investigation of the potential distribution range based on a high-quality
dataset from West Africa that includes information on 104 farms located all over Benin. Focussing on climate suitability and
applying advanced modelling, a subset of representative and uncorrelated climate variables was selected and fed into Maxent
software to obtain an estimate of climate suitability for West Africa. The resulting map was validated using an independent
dataset of 13 farms along the apparent distribution edge. The entire southern part of West Africa (covering southern Nigeria,
Benin, Togo and Ghana) features high climate suitability for R. microplus. All of Côte d’Ivoire is inside the distribution range
of this tick and the southern rim of Burkina Faso is expected to be suitable for the establishment of R. microplus popula-
tions. The validation of the distribution, dated one year after the initial field visit, confirmed the predicted distribution range,
although a small number of individuals of R. microplus were found north of the predicted limit. These low numbers might
indicate that the climate is not suitable for the establishment of a viable tick population. An alternative explanation is the
recent introduction by nomadic cattle herds passing through this location. In this region of the world, it is quite common
for cattle owners to lead their livestock over distances of more than 500 km in search of food and water.
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Introduction

Rhipicephalus microplus, a tick adapted to cattle,
reached West Africa approximately 8 years ago
(Madder et al., 2007) and has now established viable
populations in Côte d’Ivoire and Benin (Madder et
al., 2011, 2012). A country-wide survey in Benin has
shown that it has since then spread rapidly from the
assumed point of introduction in the town of
Kpinnou in the South of Benin (De Clercq et al.,
2012). After being introduced in Benin on imported
cattle from Brazil, R. microplus has rapidly replaced
the local blue tick. R. microplus is an effective, inva-
sive species that is very resistant to acaricide pesti-

cides, and it also spends a large part of its monotrop-
ic lifecycle attached to its ungulate host, so long-dis-
tance cattle movements can transport engorged
female ticks throughout the tropical belt (Barré and
Uilenberg, 2010). Moreover, this tick species is a good
vector for both Babesia and Anaplasma pathogens,
and its presence on cattle also causes weight loss due
to blood-feeding, diminished milk production and
increased mortality (Corrier et al., 1979; Guerrero et
al., 2007; da Rocha et al., 2011; Madder et al., 2011;
Da Silva et al., 2013). In addition, its presence in West
Africa has resulted in increased and inappropriate
acaricide use.

A major part of the human populations in West
Africa has limited access to protein sources, and the
spread of R. microplus might jeopardise efforts to
improve protein intake, e.g. by milk consumption.
Because of the threat that this species poses for ani-
mal production, it is the topic of several research
projects being undertaken in the West African region
(TickRisk, 2012; WecaTic, 2012). In order to design
an efficient control strategy, there is a need for tar-
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geted surveillance. However, since resources avail-
able for monitoring are scarce, surveyed locations
should be limited to areas over which this species
could be expected to spread over the next few years
(Obsomer et al., 2012). Efforts should thus be tar-
geted at areas where a given species can establish
itself, meaning that it can not only survive here, but
it can maintain viable populations and reproduce
over several years. This region is referred to as the
potential distribution range, and is determined by
environmental factors and can be described by
species distribution models (SDMs), where occur-
rence records are analysed using a set of environ-
mental variables, describing the biological require-
ments of the species, such as climate, topography or
land cover (Hirzel et al., 2006). The distribution
range for R. microplus in West Africa has been esti-
mated and is published in the existing literature, but
the area at risk of invasion by this species varies con-
siderably from study to study (Cumming, 2000;
Sutherst and Bourne, 2009). Early studies indicated
that the environment in West Africa is not suitable
for the survival of this tick (Cumming, 2000), while
more recent papers instead claim that the West
African region is highly favourable, in fact even more
favourable than South Africa, the region of the orig-
inal distribution of R. microplus (Sutherst and
Bourne, 2009). Not only do these papers offer con-
tradictory conclusions, but there are also concerns
about the data on the occurrence of the tick and the
methodology used to fit the models. The paper by
Cumming (2000), for example, used the observed
occurrences of R. microplus, which was at that time
restricted to Southern Africa, to predict the potential
distribution range in West Africa, and thus the SDM
are extrapolated over a very large area. The results
should be treated with caution as conventional SDM
approaches, such as logistic regression used by
Cumming (2000), are not particularly suitable for
extrapolation. The extrapolation ability of a model is
further decreased when many (correlated) variables
are used to fit the model. The CLIMEX approach
used by Sutherst and Bourne (2009) was designed to
be extrapolated over large areas, but the implement-
ed “four-point” algorithm is quite simplistic and
does not take seasonality into account. They used the
tick occurrence data collected by Cumming and com-
pleted this database with a small number of R.
microplus records in West Africa.

Over the last decade, more complex and robust
SDMs, allowing the prediction of the distribution
range outside of the original occurrence area, have

become available. The objective of this paper is to
improve existing maps on the potential distribution
range of R. microplus in West Africa. The main goal is
to explore the limits of the potential distribution by
extrapolating the environmental requirements of this
tick. The host will not be taken into account in this
study, nor will we address the presence of geographi-
cal barriers. We will focus on climate, as this is the
main limiting factor. The potential distribution range
is thus estimated by climate suitability. Two climatic
aspects, temperature and water saturation deficit,
determine the suitability for ticks. Water saturation
deficit is the combined effect of temperature and rela-
tive humidity. Climate suitability for R. microplus in
West Africa was estimated using (i) a high-quality
dataset with occurrence records from the West African
region; and (ii) robust SDM models. A clear indication
of the areas at risk of invasion will be an important
first step towards an effective control strategy for R.
microplus in West Africa.

Material and methods

Study area

Tick data were available for Benin, but the study
focused on the entire region of West Africa as it was
considered to be at risk of invasion by R. microplus
(Fig. 1a). This region covers four broad ecozones
(FRA, 2000) described by the kind of forest that
would be the natural vegetation given the local climate
and geology. Seen from North to South these are: (i)
tropical shrub land (TBSh); (ii) tropical dry forest
(TAwb); (iii) tropical moist deciduous forest (TAwa);
and (iv) tropical rainforest (TAr).

Tick data

Observed presence or absence of the cattle tick was
collected in 104 randomly selected farms throughout
Benin at the end of the rainy season in 2011 (De Clercq
et al., 2012). Two animals with visible tick infestation
were sampled at each location. The cattle tick was
found in nearly all locations in the southern half of the
country, while it is largely absent from the northern
half of the country (Fig. 1b). More information on the
selection of farms, the tick sampling protocol and the
tick identification process can be found in De Clercq et
al. (2012). The sampling took place at the end of the
rainy season, and very high amounts of R. microplus
ticks were found on infested animals. The observed
absence points were considered to be reliable.
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Fig. 1. The geographical location of Benin in West Africa (a) with the sampling points for R. microplus (b).

(a) (b)

Climate data

The study is based on the most widely used climate
dataset for species distribution modelling, i.e. the
Worldclim dataset, which contains 19 bioclimatic vari-
ables (Hijmans et al., 2005). It contains the most
important variables influencing tick survival and
development at a spatial resolution of 1 km (Table 1).
It contains monthly values for temperature and pre-
cipitation, which can be used as a proxy for water sat-
uration deficit in a long-term global dataset of meas-
ures made at weather stations between 1950 and
1990. The influence of global warming has caused
temperatures worldwide to be currently between 0.2
and 0.3 °C warmer than the 1961-1990 average
(Hulme et al., 2001, Sarr, 2012). Concerning rainfall,
however, the West African climate has been very vari-
able. The period between 1930 and 1960 was wetter
than normal, 1970-1980 was characterised by
droughts and rainfall in the 1990s was average. Since
the mid-1990s a wetting trend is observed (Sarr,
2012). In short, the range of inter-annual variability
when averaging over 30 years is considered larger than
the change in precipitation since the 1990s (Hulme et
al., 2001). Although the Worldclim data might seem
outdated, we considered this dataset a good-enough
descriptor of current West African climate. The deci-
sion not to use land cover information was based on
the fact that this variable is subject to human impact,

and changes rapidly in developing countries (Hulme et
al., 2001). The main asset of the Worldclim dataset is
that it is readily available for modelling purposes with-
out any form of computer-intensive pre-processing. 

Since many of these Worldclim variables are assumed
to be highly correlated, a principal component analysis
(PCA) was performed in order to assist selection of use-
ful variables. During PCA, the original correlated vari-
ables are combined to create new variables. This is
done in such a manner that the newly created variables
are orthogonal, meaning that they are no longer inter-
correlated. The combined variables are referred to as
principal components (PCs), which can be derived
using the following formula:

PC 1= loading 1 x variable 1 + loading 2 
x variable 2 + …..

Results were examined on the biplot, a scatterplot
where the X- and Y-axis are the first and second PCs.
Presence/absence records were also plotted on the
biplot providing a graph that allows analysis of the
correlation between the original variables. The vari-
able selection for the potential distribution modelling
of R. microplus was based on biological grounds
(Rodda et al., 2011). The PCA analysis was performed
to gain understanding of the correlation between the
variables in the Worldclim dataset and to assure that
the variables selected were uncorrelated.
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Geographical information system (GIS)

ArcGIS software (ESRI; Redlands, USA) was used to
process spatial data, project the information onto a
geographic coordinate system, resample all raster lay-
ers to 1 km resolution and prepare the maps (ESRI,
2009). Data layers of administrative boundaries and
general topography were downloaded from the Map
Maker Trust (Map Library, 2012).

Climate suitability maps

The goal of species’ potential distribution modelling
is to compute the probability of presence in locations
not sampled. Generally, occurrence records are
analysed using a set of environmental variables, char-
acteristic for a species native range climate (Rodda et
al., 2011). Once the relationships between environ-
mental variables and the occurrence data are estab-
lished, they can be used to project a presence of the
tick into geographical space, and results can be extrap-
olated to predict the outcome at un-sampled locations.
We used the maximum entropy (Maxent) approach, as
implemented in the Maxent stand-alone programme
(Phillips and Dudik, 2008), which is known to per-
form SDM with high accuracy (Elith et al., 2006). It
produces a map with cell values varying between 0
and 1, indicating how close the climate in each cell is
to the optimal condition for the species in question:
the higher the value, the higher the suitability. As a
rule of thumb, sites with suitability higher than 0.5
predict presence, while sites with suitability lower
than 0.5 indicate absence. The limit of the distribution
is defined as the zone featuring a suitability value
between 0.0 and 0.1.

When reliable absence indications are not available,
Maxent uses random background as absence (Elith et
al., 2011). In this study, however, reliable absence data
were available and the “background” points were
selected from the locations visited where R. microplus
was not found (Fig. 1). The data regarding presence
and absence were randomly split in a calibration and
a validation dataset. The model was fitted using 90%
of the data, and the accuracy of the model was
assessed on the remaining 10% of the data. This
approach was iterated 10 times, resulting in 10 repeti-
tions. The selected variables were fed to a Maxent
model, using 10 repetitions and hinge features. Setting
the features to “hinge” indicates that the model looks
for piece-wise linear relations between a given
Worldclim variable and the suitability for
R. microplus. The relation between an environmental

variable and suitability will have the aspect of a “bro-
ken stick”. The model was projected for the entire
region of West Africa. We used only a small number of
variables in order to avoid “overfitting”, which has
been reported as a problem when a large set of pre-
dictors is used (Jiménez-Valverde et al., 2011). In the
case of “overfitting”, the model uses a large part of the
available predictor variables and fits very close to the
training data. These models often contain relations
that have no biological foundation, resulting in mod-
els with poor generalisation potential (Elith et al.,
2006; Jiménez-Valverde et al., 2011; Rodda et al.,
2011).

Model validation

Since R. microplus is a species that invaded West
Africa recently, it was all the more interesting to test
the resulting climate suitability maps using an inde-
pendent dataset. We set out a north-south gradient at
the apparent distribution edge and revisited approxi-
mately the same locations in this area of the original
survey of 2011 exactly one year later. Between 26 and
29 October 2012, 13 points were visited covering a
200 km-long transect (Fig. 2). Each point was visited
once and ticks were collected from two animals. The
sampling method was identical to the one used in
2011 for the calibration dataset. 

Fig. 2. The locations in Benin visited during the validation cam-
paign in 2012.
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Results

Climate data correlations 

The 19 bioclimatic variables showed a high correla-
tion, the first two components explaining 86% of all
variation. The loadings for the first and second PCs
are described in Table 1, while Fig. 3 shows a scatter-
plot of the observations along the first two PCs. Each
point in Fig. 3 represents a location that was sampled
in 2011; the “x”-symbols indicate occurrences of
R. microplus, while the “o”-symbols represent loca-
tions where R. microplus was not found. Nearly all
R. microplus presences appear to be clustered along a
gradient from the upper left to the lower right.
R. microplus absences are situated in the right part of
the graph. Red arrows indicate the relation of the orig-
inal variables with the PCs. No clear clustering of vari-
ables could be observed, but there was a striking cor-
relation between Bio_06, Bio_09 and Bio_17, as well
as between Bio_07 and Bio_15. The first group of
variables describes the temperature and precipitation
in the driest period. The second group of variables
describes the seasonal variation. 

Both temperature and water availability are the
main drivers of the tick life cycle, regulating the devel-
opment and the mortality rates of the complete “off-
host” life cycle. The following uncorrelated bioclimat-

ic variables describe these climate requirements: (i)
maximum temperature of the warmest month
(Bio_05); (ii) annual precipitation (Bio_12); and (iii)
precipitation during the driest quarter (Bio_17). 

It was assumed that the surveyed area is well within
the temperature limits of R. microplus, reported to be
between 19-29 °C (Joydhar et al., 2010). 

Climate suitability map

The entire southern part of the study area features
high climate suitability for R. microplus. This region
covers the southern parts of Nigeria, Benin, Togo and
Ghana. The entire country of Côte d’Ivoire falls inside
the distribution range of this tick. Also the southern
rim of Burkina Faso is expected to be suitable for sus-
taining R. microplus populations. This was consistent
with the known distribution of R. microplus (Fig. 4).
The standard deviation on this estimate over 10 repe-
titions was maximum 0.07 and this was considered
low. The highest variability was observed along the
limits of the distribution range. Another region of high
variability was situated along the coast of Ghana and
Côte d’Ivoire. The average test AUC for the replicate
runs is 0.70, and the standard deviation is 0.08. The
precipitation during the driest quarter (Bio_17) was
the most important variable, contributing 94.2% to
the model, while the maximum temperature of the

Code Description PC 1 PC 2

BIO_01

BIO_02

BIO_03

BIO_04

BIO_05

BIO_06

BIO_07

BIO_08

BIO_09

BIO_10

BIO_11

BIO_12

BIO_13

BIO_14

BIO_15

BIO_16

BIO_17

BIO_18

BIO_19

Annual mean temperature

Mean diurnal range

Isothermality

Temperature seasonality

Maximum temperature of the warmest month

Minimum temperature of the coldest month

Temperature annual range

Mean temperature of the wettest quarter

Mean temperature of the driest quarter

Mean temperature of the warmest quarter

Mean temperature of the coldest quarter

Annual precipitation

Precipitation of the wettest month

Precipitation of the driest month

Precipitation seasonality

Precipitation of the wettest quarter

Precipitation of the driest quarter

Precipitation of the warmest quarter

Precipitation of the coldest quarter

-0.11

0.28

-0.24

0.24

0.25

-0.29

0.29

-0.21

-0.27

0.10

-0.15

-0.01

0.24

-0.26

0.28

0.26

-0.29

-0.23

0.06

0.39

-0.04

-0.23

0.25

0.19

0.01

0.08

0.28

0.03

0.41

0.35

-0.39

0.00

-0.06

0.08

-0.14

0.01

0.10

-0.35

Table 1. The 19 bioclimatic variables in the Worldclim dataset and their correlation with the first and second principal component (PC).

305



E.M. De Clercq et al. - Geospatial Health 8(1), 2013, pp. 301-308

Fig. 4. Predicted climate suitability in sub-Saharan Africa for R. microplus.

Fig. 3. Biplot showing the first two principal components (PCs) after principal component analysis (PCA). All points indicate loca-
tions sampled in 2011 with occurrences of R. microplus (x) and locations where R. microplus was not found (o). Graph (A) shows
the result for all 19 bioclimatic variables, and graph (B) contains the subset of variables selected on biological grounds.

(A) (B)

warmest month (Bio_05) and the annual precipitation
(Bio_12) contributed 4.6% and 1.2%, respectively. 

Model validation

Fig. 5 shows the mapping of the result of the inde-
pendent validation mission. In the areas with an
unsuitable climate for the cattle tick (blue), no
R. microplus ticks were found. In the southern part of
the transect, the climate is more suitable and high
numbers of this tick, ranging from 126 to 181 speci-
mens per animal, were collected. In the transition
zone, one or two R. microplus ticks were found. This
could indicate that the tick has continued its spread
northwards. The low numbers indicate that the cli-
mate is not suitable for the tick to establish a viable
population. An alternative explanation is a recent
introduction by transhumant cattle passing through
this location.

Discussion

After introduction of R. microplus in the south of
Benin roughly a decade ago, this tick has spread and
reached the northern departments of Benin.
Predictions of the range over which this species could
spread further indicate that while it has reached its full
extent in Benin, the neighbouring countries are at risk
of invasion. Indeed, the prevailing climate would
allow this tick to spread to Togo and Ghana, going as
far north as the southern rim of Burkina Faso. This
area coincides more or less with the range previously
predicted by CLIMEX (Sutherst and Bourne, 2009),
which was developed after the establishment of
R. microplus in Côte d’Ivoire was reported, the model
was probably fine-tuned using this information.

One of the reasons the model by Cumming (2000)
failed to predict the species range of R. microplus in
West Africa is that 49 predictor variables were used,
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which are highly correlated with each other. A variable
selection procedure could have ruled out insignificant
variables, but a larger problem is that using yearly
aggregated variables (e.g. mean temperature) fail to
record actual seasonal trends. Although the set of vari-
ables describes the variation of climate throughout the
year by means of the mean monthly rainfall for each
month (12 variables), as well as the mean, maximum
and minimum temperatures for each month (three
times 12 variables), the timing of dry seasons and tem-
perature fluctuations is different throughout the conti-
nent, particularly above and below the equator. For
example, March is the hottest month of the year in
Burkina Faso, but this is not the case for Senegal or
Tanzania (hottest in October), and not for Southern
Africa (hottest in January). The bioclimatic variables
in the Worldclim dataset mitigate this temporal shift in
seasonality in different geographic regions, since they
explicitly contain the values for, temperature and pre-
cipitation for respectively, the hottest, coolest, driest
and wettest periods of the year.

Conclusions

Since nearly all West African countries are likely to
import Brazilian cattle, an estimate of the distribution
range over which this species could spread further is
required to assess the threat this tick poses on animal
production in the entire region of West Africa. As
R. microplus is an exotic species in West Africa, it is
far from certain that its current distribution has
reached its full extent.

It is striking that two modelling approaches using
different datasets, different predictor variables and a
different modelling technique, agree to a large degree
on the northern limit for R. microplus. Nonetheless,
further monitoring of this invasive species will yield
important information, not only from a veterinary
point of view, but also for modelling of invasive
species in general. Further longitudinal research and
follow-up is needed to confirm this hypothesis. 
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